This is the code implementation (pytorch) for our paper: TROJANZOO
TrojanZoo provides a universal pytorch platform to conduct security researches (especially backdoor attacks/defenses) of image classification in deep learning. It is composed of two packages: trojanzoo
and trojanvision
. trojanzoo
contains abstract classes and utilities, while trojanvision
contains abstract and concrete ones for image classification task.
Screenshot
Features
- Colorful and verbose output!
Note: enable with --color
for color and --verbose
for verbose.
To open an interactive window with color, use python - --color
- Modular design (plug and play)
- Good code linting support (this package requires
python>=3.9
) - Register your own module to the library.
- Native Pytorch Output
trojanzoo
and trojanvision
provides API to generate raw pytorch instances, which makes it flexible to work with native pytorch
and other 3rd party libraries.
- Enable pytorch native AMP(Automatic Mixed Precision) with
--amp
for training - Flexible Configuration Files
- Good help information to check arguments. (
-h
or--help
) - Detailed and well-organized
summary()
for each module.
Installation
pip install trojanzoo
(todo) conda install trojanzoo
docker pull local0state/trojanzoo
Quick Start
You can use the provided example scripts to reproduce the evaluation results in our paper.
Note: The program won’t save results without --save
- Train a model: e.g.
ResNetComp18
onCIFAR10
with 95% Acc
python train.py --verbose 1 --amp --dataset cifar10 --model resnetcomp18 --epoch 300 --lr 0.1 --lr_scheduler --lr_step_size 100 --save
- Test backdoor attack (e.g., BadNet): e.g.
BadNet
withResNetComp18
onCIFAR10
python backdoor_attack.py --verbose 1 --pretrain --validate_interval 1 --amp --dataset cifar10 --model resnetcomp18 --attack badnet --random_init --epoch 50 --lr 0.01 --save
- Test backdoor defense (e.g., Neural Cleanse): e.g.
Neural Cleanse
againstBadNet
python backdoor_attack.py --verbose 1 --pretrain --validate_interval 1 --dataset cifar10 --model resnetcomp18 --attack badnet --defense neural_cleanse --random_init --epoch 50 --lr 0.01
IMC
python backdoor_attack.py --verbose --pretrain --validate_interval 1 --amp --dataset cifar10 --model resnetcomp18 --attack imc --random_init --epoch 50 --lr 0.01 --save
AdvMind
(with attack adaptive
and model adaptive
)
python adv_defense.py --verbose --pretrain --validate_interval 1 --dataset cifar10 --model resnetcomp18 --attack pgd --defense advmind --attack_adapt --defense_adapt
Detailed Usage
Configuration file structure
All arguments in the parser are able to set default values in configuration files.
If argument values are not set in the config files, we will use the default values of __init__()
Parameters Config: (priority ascend order)
The higher priority config will override lower priority ones.
Within each priority channel, trojanvision
configs will overwrite trojanzoo
- Package Default:
/trojanzoo/configs/
,/trojanvision/configs/
These are package default settings. Please don’t modify them. You can use this as a template to set other configs. - User Default: Not decided yet.(Enable it in the code
trojanzoo/configs/__init__.py
,trojanvision/configs/__init__.py
) - Workspace Default:
/configs/trojanzoo/
,/configs/trojanvision/
- Custom Config:
--config [config location]
- CMD parameters:
--[parameter] [value]
Store path of Dataset, Model, Attack & Defense Results
Modify them in corresponding config files and command-line arguments.
Dataset: --data_dir
(./data/data
)
Model: --model_dir
(./data/model
)
Attack: --attack_dir
(./data/attack
)
Defense: --defense_dir
(./data/defense
)
Output Verbose Information:
- CMD modules:
--verbose
- Colorful output:
--color
- tqdm progress bar:
--tqdm
- Check command-line argument usage:
--help
- AdvMind verbose information:
--output [number]
Use your DIY Dataset/Model/Attack/Defense
- Follow our example to write your DIY class. (
CIFAR10
,ResNet
,IMC
,Neural Cleanse
)It’s necessary to subclass our base class. (Dataset
,Model
,Attack
,Defense
)
Optional base classes depending on your use case: (ImageSet
,ImageFolder
,ImageModel
) - Register your DIY class in
trojanvision
Example:trojanvision.attacks.class_dict[attack_name]=AttackClass
- Create your config files if necessary.
No need to modify any codes. Just directly add{attack_name}.yml
(.json
) in the config directory. - Good to go!
Todo List
- Sphinx Docs
- Unit test
trojanzoo (this link opens in a new window) by ain-soph (this link opens in a new window)
TrojanZoo provides a universal pytorch platform to conduct security researches (especially backdoor attacks/defenses) of image classification in deep learning.